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High-dimensional, non-linear dynamics are pervasive in science, impacting many frontiers
of research from civil engineering [14] to plasma physics [15], active matter systems [12] to
epidemiology [13], and beyond. Turbulence is often a “flagship” example of such systems,
due to its ubiquity in climate, [2], industrial [I], and military applications [10]. Despite a
rich history of study, predicting the behavior of turbulence has remained largely an unsolved
problem and there exists an ongoing need for predictive and practical reduced order models
of turbulence.

My Ph.D. research focused on making dynamical systems theory applicable to turbulence,
often through the use of data-driven methods and reduced order models. In Axiom-A
systems, where the Dynamical Systems Theory approach to chaos was developed, the chaotic
state is always infinitesimally close to at least one invariant set in the phase space [11].
Since, for smooth flow maps, two trajectories that begin close will remain close for some
finite interval of time, infinitesimal closeness implies shadowing. Shadowing is when two
trajectories co-evolve (for some finite interval of time). It is very useful to identify instances
where a chaotic state shadows elements of an invariant set, since the latter can be much
simpler to describe and analyze.

However, infinitesimal closeness is not
observed in turbulence on any reasonable
timescale, partly due to the fact that only

time

few invariant sets are known. There was a [pvariant Set WAF ,rvr ) :*‘n y
need for detecting shadowing without the
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notion of infinitesimal closeness. So, we de- ~Lurbulence L» 4 oG

veloped a method that utilized a symmetry-
informed projection of turbulent flow to de-
tect intervals of time where shadowing oc-
curs. An example of the events our method
detects is illustrated in (A), which shows Invariant Set
turbulence co-evolving with a trajectory
embedded within an invariant set. Only a
cross-section of the azimuthal component of
velocity is plotted, but the entire flow fields
are similar during shadowing. Our publica-
tions of this work [7; [5; 4] found elements
from all known invariant sets to be shad- €1 €9

owed and, despite only few invariant sets

being known, found turbulence to shadow ()

elements of these sets quite often.

Shadowing is a very useful tool in practice. In an application to two-dimensional tur-
bulence, I worked on uncovering a physical mechanism behind extreme events: statistically
irregular, catastrophic behaviors of dynamical systems, such as oceanic rogue waves or
sudden, intense precipitation. Using adjoint-based optimization methods, I determined an
invariant set that characterizes this behavior (B) and used our symmetry-informed projec-
tion to show that turbulence shadowed elements of this invariant set during extreme events.
It follows that, if one were able to identify shadowing in real time, the incoming extreme
event could perhaps be forecast or, with some applied control, quelled entirely.
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These invariant sets are also quite use-

— - time — — ful in understanding the statistics of chaotic

flows, for instance, in studying the inverse

] :>< — energy cascade: an anomalous statistical

space DC : flux of energy from small scales to large
- ><: - seen only in quasi two-dimensional systems.

Vortex merging has long been been stud-
, o ied as a physical mechanism behind the in-
Merged Pseudo Bound Merging

Merged Boundary verse energy cascade [9], however, no one

(©) has yet been able to predict with preci-

sion when two vortices will merge [§]. In-

deed, vortices are formally infinite dimen-

sional objects, and it is difficult to con-

Chaos Invariant Sets struct an outcome boundary in such a large

space. Using point vortices, I constructed

a model with less than or equal to 5 de-

z grees of freedom that well characterized the

macroscopic outcome boundaries of vortex-

vortex interactions. This model contains

low-dimensional (invariant set) representa-

(D) tions (C) of merged, bounded, and unbound

vortex pairs, and even uncovered an inter-

mediate pseudo-merged state that had been observed but not yet characterized in the lit-

erature [3]. Surprisingly, this reduced model predicted the merging boundary observed in

experiment better than other theoretical results in the literature derived using extended
flow fields. This work will soon be a first author publication (in preparation).

Long-time statistics are well understood in Axiom-A systems, where it is possible to
compute the distribution of any chaotic observable as an expansion over infinitely many
invariant sets [6]. However, as we saw with shadowing, this result relies heavily on the
chaotic state venturing infinitesimally close to invariant sets and does not have a direct
application to turbulence. To combat this, I developed a data-driven method that uses
linear regression to approximate a Dynamical-Systems-Theory-like expansion using only a
small number of invariant sets, and does not require the system coming close to them.
(D) illustrates how well 21 invariant sets can approximate the coarse-grained likelihood
of observing a given chaotic microstate of the system. This particular study shows that
invariant sets are a powerful and seemingly quickly convergent representation of chaotic
statistics. A publication is also in preparation.

As the above attests to, my PhD work at Georgia Tech has seen me through many
different research projects, necessitating novel analytical skills and mastery over a number
of numerical methods, integrators and solvers. While I began each of these projects with
little to no prior exposure, I was able to produce novel contributions to the field in each
project, resulting in either publishable papers or conference talks.

I am someone who can greatly contribute model reduction, machine learning and control
oriented research problems—particularly in high-dimensional chaotic systems. Now that
I have earned my Ph.D., I look forward to applying my expertise and making a positive
impact. I welcome the opportunity to discuss my qualifications further and explore how I
can contribute to your organization.
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